
JOURNAL OF CATALYSIS 42, 303-311 (1976) 

Impurity Poisoning of Catalyst Pellets 

B. VALDMAN,~ P. A. RAMACHANDRAN, AND R. HUGHES 

Department of Chemical Engineering, University of Salford, Saljord M6 4 WT, England 

Received June 23, 1975 

A mathematical model has been developed for predicting the decrease in catalytic activity 
when an independent reversible poison is adsorbed on a catalytic surface. A Langmuir- 
Hinshelwood model is used for the reaction, and it is assumed that the poison in the gas phase 
is always in equilibrium with the adsorbed phase to which it is related by means of the Langmuir 
adsorption isotherm. The equations are solved for a slab and sphere both numerically and by 
a single point collocation approximation. A study of the dynamics of the process during de- 
activation and reactivation is presented and aspects of reactor performance in the presence of 
poison analyzed. 

INTRODUCTION 

The deactivation of a catalyst and the 
consequent decay of catalyst effectiveness 
is a very important and common problem 
in industry. Catalyst deactivation processes 
can be divided into three general classes 
(1) : (a) poisoning, loss of activity caused 
by strong chemisorption of some impurity 
normally contained in the reacting mixture ; 
(b) fouling, loss of activity caused by 
reactant or product impurity degradation 
on the catalyst surface, such as catalyst 
coking ; (c) aging, loss of activity caused by 
sintering or decrease of active surface. 

A number of theoretical studies of the 
process of catalyst fouling have been 
published in the literature, where parallel, 
series, or independent fouling has been 
considered (2-B). However, there are 
limited studies of the poisoning process 
where the poisoning is essentially caused 
by reversible adsorption of an impurity 
present in the feed stream. Gioia (7) and 
Gioia and Greco (8) have studied the 

1 On leave of absence from Department of 
Chemical Engineering, Universidade Federal do 
Rio de Janeiro, Brazil. 

problem of Langmuir adsorption of poison. 
The analysis is for the case where the main 
reaction is not under any diffusion limiting 
conditions. Further, the analysis is for an 
infinite slab geometry, and this depicts the 
actual case accurately only for small times 
of the poisoning process, because of the 
boundary conditions used. The situation 
where the main reaction is diffusion limited 
and follows Langmuir-Hinshelwood type 
of kinetics does not appear to have been 
studied. 

It is the purpose of the present paper to 
study this last situation based on a model 
which assumes an isothermal catalyst pellet 
with uniform initial activity distribution. 
A uniform effective diffusivity which is 
unaffected by concentration gradients and 
by the poisoning process is also assumed, 
together with a diffusion controlled main 
reaction and Langmuir adsorption for the 
poisoning. External transport limitations 
are assumed to be negligible. An analytical 
solution is developed for calculating effec- 
tiveness fact.ors. For the particular case of 
large times of poisoning, when new steady- 
state operating conditions are reached, an 
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equation for calculating the effectiveness 
factor for the limiting cases of particles 
with large and low Thiele moduli is also 
presented. In the context of this analysis, 
the results presented by Gioia (7) can be 
obtained as a particular case of the present 
general model. 
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NOMENCLATURE 

Concentration of reactant and poi- 
son, respectively, gram moles per 
cubic centimeter 
Collocation constant for the La- 
placian operator 
Dimensionless concentration defined 
as A/A0 and P/P, 
Dimensionless concentration at the 
collocation point 
Dimensionless concentration of poi- 
son at the collocation point at the 
instant of reactivation 
Effective diffusivity, square centi- 
meters per second 
rate constant for main reaction, 
seconds-’ 
Langmuir adsorption constant, cu- 
bic centimeters per gram mole 
Particle half dimension, centimeters 
Adsorbed phase poison concentra- 
tion, gram moles per cubic centi- 
meter 
Maximum adsorbed phase poison 
concentration, gram moles per cu- 
bic centimeters 
Dimensionless variable defined as 
xl(e)4 
Reaction rate of A, gram moles per 
cubic centimeter per second 
Time, seconds 
Dimensionless variable defined as 
KaAo/(l + KPPo) 
Distance into pellet, centimeters 
Dimensionless distance defined as 
x/L 
Dimensionless weight values 

Subscripts 
A Reactant 

0 Surface 
P Poison 

Greek letters 

t Effectiveness factor defined by Eq. 
(8) 

r Characteristic time defined as 
L2Kppmax/Dp, seconds 

e Dimensionless time defined as t/T 
x Dimensionless geometric shape pa- 

rameter 

i 
Thiele modulus defined a,s (kL2/DA)* 
Dimensionless concentration flux 
defined as dCa/dX 

GENERAL THEORY 

A differential mass balance for the react- 
ing component A in an isothermal flat slab 
is : 

DAd2A/dx2 = r, (1) 

where DA is an effective diffusivity and x 
a distance coordinate. 

Assuming that the poison adsorbs in- 
dependently of any other component, a 
mass balance for the poison component P 
yields : 

Dpa2P/a9 = aF/at, (2) 

with P as the gas phase concentration and 
p as the adsorbed phase concentration. If 
the adsorption of the poison is rapid, 
equilibrium conditions prevail and the 
concentrations P and p are related by 
means of the Langmuir adsorption iso- 
therm : 

mn,x = KpP/(l+ KPP), (3) 

where P max is the maximum adsorbed phase 
poison concentration in equilibrium with 
the gas phase. 

The model developed here is of validity 
for a diffusion limited general type of 
reaction rate expression of Langmuir- 
Hinshelwood kinetics, and the mathemat- 
ical technique employed is of general 
applicability. 
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For the purpose of illustration only, we 
shall consider a particular case where the 
main reaction mechanism can be expressed 
by the following reaction rate equation : 

T = kA/(l + KAA + KpP), (4) 

which represents the reaction rate of a 
component A when the adsorption of A is 
the controlling step and a certain number 
of active sites are occupied by a poison 
component P (9). The above reaction rate 
equation is also valid when the rate 
controlling mechanism is the surface reac- 
tion involving single active sites of the 
catalyst. This type of reaction rate occurs 
frequently in reactions of hydrogenation 
as, for example, in the hydrogenation of 
commercial benzene which contains small 
quantit,ies of thiophene, where the thio- 
phene acts as a poison by virtue of its 
preferential adsorption on the metallic 
catalyst used in the reaction (10). 

Equations (1) to (4) can be combined and 
expressed in dimensionless form as : 

aCA CA 
__ = 42. 

dX2 
- (5) 

1 + KAAOCA + KPPOCP 

and 

aCP 1 acp 
--= .- 
ax2 (1 + KPP,,CP)~ ae ' 

(‘3) 

which are solved simultaneously with the 
following boundary conditions : 

x=0 CA=Cp=l for 0 > 0, 

acA a(Tp 
A- = 1 __ = __ = 0 

ax ax 
for 0 > 0, 

8=0 cA=l,cp=o for O<X<l. 

For small values of dimensionless time, 
0, Eq. (6) can be transformed to a total 
differential equation by using the trans- 
formation group 

q = x.0-1 t 

which yields the equation : 

d2Cp x 1 dCp 
PC--.- 
dX2 

a-. (7) 
0 2(1 + KpPc,c~)~ dX 

Equation (5) represents the diffusion 
and chemical reaction in the catalyst. Since 
the poison concentration, CP, depends on 
time, this equation represents an unsteady- 
state equation. Equation (6) represents the 
functional dependence of the poison pene- 
tration into the catalyst with time and on 
the poison concentration in the gas phase. 
For a particular value of dimensionless 
time, 0, the concentration profile of reactant 
and poison is obtained by solving these two 
equations simultaneously using numerical 
procedures. 

EFFECTIVENESS FACTOR 

The overall effectiveness factor of a 
catalyst pellet can be characterized by the 
ratio of the actually observed reaction rate 
to the reaction rate based on the surface 
conditions in absence of any poisoning or 
external mass transfer resistance and is 
mathematically expressed for the case under 
consideration as : 

1 + KAAO dCA 
7 = --.- 

42 dX x-o’ 
(8) 

The value of dCA/dX at the surface is 
determined by integrating Eq. (5) and 
taking its value at X =O. As the reaction 
rate of A is a function of the concentration 
of reactant A and poison P, this integration 
can normally be performed only by numer- 
ical methods as a two point boundary value 
problem, except for the limiting case of 
uniform distribution of poison. Thus, the 
numerical integration must be carried out 
by a trial and error procedure. 

An alternative way to calculate the 
effectiveness factor is by the orthogonal 
collocation polynomial approximation (II) 
using a single parameter trial function. The 
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effectiveness factor becomes : 

(A + 1) 
q = r(X = 1, e = 0) 

.rw,r(x = Xl) 

+ WzT(X = I>], (9) 

where X is a geometric factor and w1,2 are 
weight values. 

The reaction rate at a single internal 
collocation point, r(XJ, can be determined 
by calculating the poison, Cp, and reactant, 
(.?a, concentrations at this point by the 
equations : 

1 1 

[ 

1 - & 
-.--. In 
Bll (1 + KPPd2 1 + KPM% 

- KPPO. (1 + KPPO) 

and 

CP 

‘1 + KPPOCP 1 = - e (10) 

1+; 
11 

(1 - &)(l + KaAlLL + KPPOQP) 

= 0, (11) 

where BII is a constant dependent on the 
pellet geometry (Table l), and 0 any 
selected value of time. The effectiveness 
factor at this value of time can then be 
calculated by the following expression : 

wl eA(1 + KAAO + KF’PLl) 

‘W:, 1+ -* 
~2 1 + KAAJ~A + KpPZ 1 ’ 

(12) 

Table 1 gives values of X, Bu, wl, and w2 
for slab, cylinder, and spherical geometries. 

Equation (10) shows that the time 
necessary for a concentration of poison to 
reach a given value at the collocation point 

TABLE 1 

Matrices for Single Point Orthogonal 
Collocation Approximation 

Geometry X Bll Wl W2 

Planar 0 -2.5 0.833 0.167 
Cylindrical 1 -6.0 0.375 0.125 
Spherical 2 -10.5 0.233 0.100 

is inversely proportional to the parameter 
BI1, which is directly related to the shape 
of the particle. From Table 1 it can be 
seen that for a sphere this parameter has 
a larger value than for a slab, and hence 
the time necessary for a sphere to become 
poisoned is less than for a slab. This result 
was also reported for the case of a system 
poisoned by a precursor P in the feed, which 
reacts with the active surface according to 
an irreversible and nonlinear mechanism (6). 

LIMITING CASES 

1. Large Values of Thiele Moduli 

At larger times when the poison can be 
considered uniformly adsorbed over the 
entire catalyst, Cp = 1, and using Peter- 
sen’s (12) approximation for large values of 
Thiele moduli, the effectiveness factor can 
be calculated by the expression: 

(1 + KaAo) 

11=--- 

4 

2 f 
X- 

i [ 

l- 
ln(1 + V) 

KAAII v II 
2 (13) 

where V = KAAo/(~ + KpPJ. 
The value of the parameter V ranges 

between KAAO/(~ + KPP,) and KAA~ for 
time infinity and time equal to zero, 
respectively. For unpoisoned catalyst, 
(PO = 0), the above formula is generally 
valid for Thiele moduli larger than 3. For 
a poisoned catalyst, the value of Thiele 
moduli which correspond to the beginning 
of the asymptotic region is larger and 
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depends on the amount of poison adsorbed 
in the catalyst. 

2. Low Values of Thiele Moduli 

For low values of Thiele moduli the 
concentration profile of CA tends to unit.y, 
and Eq. (12) can be used to calculate the 
effectiveness factor as a function of the 
concentration at the collocation point, CP, 
which changes with time, as related in 
Eq. (10). 

For uniform poison distribution Eq. (12) 
yields : 

1 + KAAO 
q(e = w) = . 

1 + KAAO + KPPO 

(14) 

This equation is valid for any value of 
KpPo and for particles with Thiele moduli 
less than 0.5. As the value of KpP,, in- 
creases this upper limit also increases. 

REACTIVATION OF CATALYST 

5 

The orthogonal collocation method can _ -, __ __ _ 
be used to follow the increase of the 
effectiveness factor when the poison is 
removed from the gas phase, corresponding 
to a negative step in the concentration of 
poison at the catalyst surface. For a single 
collocation point Eq. (7) is solved subject 
to the conditions that at time equal t.o zero 
the concentration of poison at t,he surface 
is zero and at the collocation point is equal 
to a value c,(O). For this case the conccn- 
tration of poison at the collocation point is 
related to time by the equation: 

FIG. 1. Steady-state distrlbutlon of reactant, in a 
flat slab catalyst pellet, at different levels of poison 
concentration. Key : The solid curves are for 
KpPo = 0, the broken for KpP, = 1, and the dotted 
for KpP, = 10. 

fj=I. 
B11 [ 

1 1 
A - 

1+ KPPOCP 1 + KPf%L(O) 

+ In 
1 + KPP,~P(O) 

eP (0) 

eP 
‘1 + KPP& >I ’ 

(15) 
Once the poison concentration is known 

at a fixed value of time, 8, Eqs. (11) and 

(12) can be used to calculate the effective- 
ness factor at this particular time during 
the process of reactivation of t’he particle. 

RESULTS AND DISCUSSION 

In the following numerical results the 
values used for the various parameters 
were (7) : 

Dp = 1O-2 cm2/sec, 

L = 0.6 cm, 

Kp = log cm3/gmol, 

~‘,,x = 1O-5 gmol/cm3, 

KACA = 1 dimensionless, 

which leads to a characteristic time of the 
system, 7, equal to 100 hr. 
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FIQ. 2. Effectiveness factor versus Thiele modulus, 
for slab and sphere, at various times of poisoning. 
Key: The solid curves are for a flat slab and the 
broken for a sphere; the dots are effectiveness factor 
calculated by a single point collocation approxima- 
tion for a flat slab. 

1. Concentration Distribution of Reactant 

Figure 1 compares the concentration 
distribution of reactant A in a finite slab 
when no poisoning is present to the distribu- 
tion in the presence of poisoning at time 
equal to infinity, at two levels of poison 
concentration characterized by KpPo equal 
to 1 and 10 and for three values of Thiele 
moduli equal to 1, 3, and 10. As can be 
seen from this figure, there is a large spread 
on the concentration profiles at inter- 
mediate values of the Thiele modulus 
(4 = 3). At Thiele moduli equal to 1 and 
10 the change of concentration profile due 
to poisoning is much less pronounced. 

2. Efectiveness Factor 

The variation of effectiveness factor, 7, 
as a function of Thiele modulus at different 
values of dimensionless time, 8, is shown in 
Fig. 2 for slab and spherical geometry. For 
convenience, the results for a sphere are 
plotted on the basis of the Thiele modulus 
for a sphere of radius R, being defined as 

the same as a slab of thickness equal to 3L. 
The curves for sphere and flat plate agree 
closely in the absence of poison, f3 = 0 and 
for the steady state reached in the presence 
of poison, 0 = 00. For intermediate values 
of 0, the effectiveness factor for a flat plate 
and sphere do not coincide, indicating that 
the poisoning is faster in the case of a 
sphere. 

The value of the effectiveness factor 
calculated by using a single collocation 
point approximation is compared with the 
numerical solution of the differential equa- 
tion in Fig. 2. It can be seen that the single 
collocation point approximation gives ac- 
curate predictions of the effectiveness factor 
for Thiele moduli less than 5 in the absence 
of poisoning. For larger values of Thiele 
moduli, a single collocation point predicts 
higher effectiveness factors than the nu- 
merical solution. Hence it is necessary to 
use two point collocation which is sufficient 
for all practical ranges of Thiele moduli 
(12). The failure of the single collocation 
point for Thiele modulus larger than 5 is 
due to the fact that, the concentration 
profile of the reactant being very steep, the 
concentration at the collocation point has 
a small value close to zero. When poisoning 
takes place, the concentration of reactant 
at various points is larger than in the ab- 
sence of poison as already shown in Fig. 1. 
Therefore, the single collocation point is 
sufficiently accurate up to a Thiele modulus 
of about 10 in the presence of poisoning. 

For studying the effect of size and other 
characteristics of catalyst pellets, it is 
convenient to plot the variation of effective- 
ness factor as a function of real time, t. 
The ratio q/q0 which represents the ratio 
of the effectiveness factor at any time to 
that for an unpoisoned catalyst is shown in 
Fig. 3 for five values of Thiele moduli. 
This ratio signifies the relative drop in the 
reaction rate caused by poisoning as a 
function of time. For small values of the 
Thiele modulus the poisoning is completed 
in much less time than for the larger ones, 
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Fro. 3. Time-dependent variation of the ratio ~/TO during poisoning, for various values of 
Thiele moduli, of flat slab catalyst pellets. 
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and it is also accompanied by a larger 
relative drop in activity. The reverse is 
true for a large Thiele modulus. For 
example, a system with Thiele modulus 
equal to 1 drops to 18% of its original 
activity at the steady state, and this takes 
less than 10 hr, while a system of Thiele 
modulus equal to 10 drops only to 3701, 
and this takes more than 300 hr. A similar 
trend is also seen at any given time. For 
example, 3 hr after the introduction of 
poison into the system, the relative drops 
in activity are equal to 58 and 270 for Thiele 
modulus equal to 1 and 10, respectively. 

FIG. 4. Time-dependent variation of the effective- 
ness factor during poison desorption, for various 
values of Thiele moduli. Key: The solid curves are 
for 4%hr contact of poison, and the broken are for 
4-hr. 

3. Dynamics of Poison Desorption 

If the poison is removed from the feed 
stream, the catalyst will recover its original 
activity, since it is assumed that the 
adsorption is reversible. Figure 4 represents 
the dynamics of desorption of poison from 
the active sites (reactivation), for two 
situations. One is when the poison remains 
a long time in the feed and hence equilib- 
rium will be achieved between the ad- 
sorbed phase and the gas phase concentra- 
tions. This equilibrium is achieved after 
48 hr for all systems with Thiele moduli 
smaller than 10, for KpPo equal to 10 and 
other catalyst parameters cited earlier. 
The continuous lines in Fig. 4 represent the 
dynamics of catalyst reactivation for the 
system in which the poison is present in 
the gas phase for times larger than this. 
A comparison of Figs. 3 and 4 shows that 
the time necessary for the catalyst to 
recover the original activity is much longer 
‘than the time necessary for poisoning. For 
example, for a Thiele modulus equal t,o 2, 
Fig. 3 shows that the poisoning is completed 
in approximately 25 hr, and Fig. 4 shows 
that the time necessary for the system to 
recover its original activity level is approx- 
imately equal to 150 hr, that is, the time 
for reactivation is roughly sixfold that for 
deactivation. These theoretical predictions 
support the experimental results published 
by Gioia (7) for the study of ethylene 



310 VALDMAN, RAMACHANDRAN AND HUGHES 
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FIG. 5. Effect of Thiele modulus on catalyst 
productivity. Key: The solid curves are for 48-hr 
contact of poison, and the broken are for 4-hr. 

hydrogenation in which water vapor was 
the reversible poison. For a value of KpPo 
equal to 10 the poisoning was completed in 
11 min, while the reactivation took 60 min. 
Therefore, it can be said that the dynamics 
of poisoning of catalyst is very fast during 
the process of deactivation and very slow 
during reactivation. 

If the poison is not present in the gas 
phase for sufficient time to reach equilib- 
rium, the dynamics of reactivation of 
systems with different Thiele moduli will 
be different. The broken lines in Fig. 4 
illustrate how the poison is removed from 
the feed stream after 4 hr of operation. 
For this duration of poisoning the activity 
decrease for systems with a Thiele modulus 
greater than 3 is very small (Fig. 3), and 
therefore the time required for reactivation 
is also small, as is shown in Fig. 4. Con- 
versely, for Thiele moduli equal to 1 and 2 
the activity is 25 and 55%, respectively, 
and for these values significant reactiva- 

tion periods nnmcly, 40 and 150 hr, arc 
necessary. 

4. Reactor Performance in Presence of 
Poisoning 

It is interesting to examine the pcrform- 
ante of a reactor for systems subject to 
continuous and intermittent poisoning for 
long periods of operation, The productivity 
of the reactor can be measured as the area 
under the curve of effectiveness factor 
versus time for a given total period of 
operation. Figure 5 provides a direct mea- 
sure of the value of productivity for a 
continuous operation time, t, for three cases 
(Thiele moduh equal to 1, 2, and 3). The 
broken lines in Fig. 5 show the reactor 
performance when the poison is present 
only for the first 4 hr in the feed stream, 
corresponding to t,he case of intermittent 
poisoning. It can be seen from this figure 
that a system with a smaller Thiele modulus 
gives a better productivity. However, if 
the poison is present continuously along 
with the feed, the behavior is different. 
This is shown by the continuous lines of 
Fig. 5, where a system with an intermediate 
value of the Thiele modulus equal to 2 
gives better productivity than that with a 
Thiele modulus equal to 1 or 3. Figure 5 
also shows that a system with a Thiele 
modulus equal to 1 gives a better perform- 
ance than a Thiele modulus equal to 3 only 
if the time of operation is more than 300 hr. 
These results can be easily explained on the 
basis of the plot of effectiveness factor 
versus time for various Thiele moduli 
(Fig. 3). 

These results indicate that higher mass 
transfer resistances increase the lifetime 
of the pellets, while lower mass transfer 
increases the effectiveness factor. The 
combined effects of these opposing factors 
result in an optimum value of Thiele 
modulus for which the productivity is 
maximum for a given period ,of continuous 
operation. 
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CONCLUSIONS 

The problem of the decrease in catalyst 
activity due to a reversible adsorption of 
poison was solved both numerically, solving 
the differential equations for the system, 
and using a single point collocation approx- 
imation. The latter is shown to be suffi- 
ciently accurate for many practical situa- 
tions. It was found that for small Thiele 
moduli the poisoning is rapid and also 
accompanied by a large drop in effectiveness 
factor compared to the initial value. The 
reverse was found to be true for large 
Thiele moduli. The dynamics of poison 
desorption indicates that the time for 
reactivation is much larger than the time 
for deactivation, which is in agreement 
with the experiments of Gioia (7). The 
analysis of reactor performance for the 
case where t,he poison is continuously 
present in the feed stream shows t,hat the 
use of an intermediate value of the Thiele 
modulus in many cases gives an improved 
productivity compared with low or large 
values of Thiele moduli. For the case of 

intermittent poisoning, the catalyst with 
no diffusion limitation is shown to yield 
the maximum productivity. 
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